Modeling Multiphase Materials Processes: Gas-Liquid Systems - Manabu Iguchi - Bøger - Springer-Verlag New York Inc. - 9781441974785 - 24. november 2010
Ved uoverensstemmelse mellem cover og titel gælder titel

Modeling Multiphase Materials Processes: Gas-Liquid Systems 2011 edition

Manabu Iguchi

Pris
₺ 7.390

Bestilles fra fjernlager

Forventes klar til forsendelse 14. - 24. jun.
Tilføj til din iMusic ønskeseddel
Eller

Findes også som:

Modeling Multiphase Materials Processes: Gas-Liquid Systems 2011 edition

Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing.


Marc Notes: Includes bibliographical references and index. Table of Contents: 1. Introduction -- 1.1. Introductory Remarks -- 1.2. Classification of Models -- 1.2.1. Physical Modeling -- 1.2.2. Mathematical Modeling -- 1.3. General Strategy for Modeling Two-Phase Phenomena -- 1.4. Basic Physical Situations of Relevance in Gas-Liquid Processes -- 1.4.1. Gas-Liquid Two-Phase Flows in Cylindrical Bath -- 1.4.2. Gas-Liquid Two-Phase Flows in Pipes -- 1.4.3. Dimensionless Parameters -- 1.5. Closing Remarks -- References -- 2. Turbulence Structure of Two-Phase Jets -- 2.1. Mean Flow Characteristics -- 2.1.1. Introduction -- 2.1.2. Experiment -- 2.1.3. Experimental Results -- 2.2. Conditional Sampling -- 2.2.1. Introductory Remarks -- 2.2.2. Experimental Apparatus and Procedure -- 2.2.3. Shape and Size of Helium Bubble -- 2.2.4. Four-Quadrant Classification Method -- 2.2.5. Experimental Results Based on Four-Quadrant Classification Method -- 2.3. Summary -- 2.3.1. Mean Flow Characteristics -- 2.3.2. Conditional Sampling -- References -- 3. The Coanda Effect -- 3.1. General Features -- 3.1.1. Overview -- 3.1.2. Mechanism of Coanda Effect -- 3.2. Wall Interaction in Metallurgical Reactor -- 3.2.1. Bubble Characteristics -- 3.2.2. Liquid Flow Characteristics -- 3.3. Interaction Between Two Bubbling Jets -- 3.3.1. Critical Condition for Merging of Two Bubbling Jets -- 3.3.2. Merging Length of Two Bubbling Jets -- 3.3.3. Bubble Characteristics -- 3.3.4. Liquid Flow Characteristics -- 3.3.5. Mixing Time -- References -- 4. Interfacial Phenomena -- 4.1. Single Bubble on Flat Plate -- 4.1.1. Overview -- 4.1.2. Experimental Apparatus and Procedure -- 4.1.3. Experimental Results -- 4.1.4. Summary -- 4.2. Bubbling Jet Along Vertical Flat Plate -- 4.2.1. Bubble Characteristics -- 4.2.2. Liquid Flow Characteristics -- 4.3. Bubble Shape and Size -- 4.3.1. Experimental Apparatus and Procedure -- 4.3.2. Experimental Results -- 4.4. Bubble Removal from Molten Metal -- 4.4.1. Experimental Apparatus and Procedure -- 4.4.2. Experimental Results -- 4.5. Flow Distribution in Vertical Pipes -- 4.5.1. Experimental Apparatus and Procedure -- 4.5.2. Experimental Results -- 4.5.3. Bubble Velocity and Size -- References -- 5. Swirling Flow and Mixing -- 5.1. Rotary Sloshing of Liquid in Cylindrical Vessel -- 5.1.1. Linear Theory -- 5.1.2. Nonlinear Theory -- 5.1.3. Summary -- 5.2. Swirl Motion of Bubbling Jet -- 5.2.1. General Features -- 5.2.2. Operation Under Reduced Surface Pressure -- 5.2.3. Mixing Time -- 5.2.4. Effect of Top Slag -- 5.2.5. Effect of Offset Gas Injection -- 5.2.6. Effect of Dual Jet Sources -- References -- 6. Slag-Metal Interaction -- 6.1. Shape and Size of Entrained Metal Layer -- 6.1.1. Experiment -- 6.1.2. Experimental Results -- 6.2. Characteristics of Metal Droplets -- 6.2.1. Experiment -- 6.2.2. Experimental Results -- 6.3. Summary -- 6.3.1. Shape and Size of Entrained Metal Layer -- 6.3.2. Characteristics of Metal Droplets -- References -- 7. Surface Flow Control -- 7.1. Overview -- 7.2. Experiment -- 7.2.1. Experimental Apparatus and Procedure -- 7.2.2. Boundary Conditions on Bath Surface -- 7.2.3. Data Processing -- 7.3. Experimental Results -- 7.3.1. Mixing Time -- 7.3.2. Fluid Flow Phenomena -- 7.4. Conclusions -- References -- 8. Two-Phase Flow in Continuous Casting -- 8.1. Flow Characteristics -- 8.1.1. Overview -- 8.1.2. Experiment -- 8.1.3. Experimental Results -- 8.1.4. Summary -- 8.2. Mold Powder Entrapment -- 8.2.1. Overview -- 8.2.2. Experimental Apparatus and Procedure -- 8.2.3. Some Aspects of Kelvin-Helmholtz Instability -- 8.2.4. Experimental Results -- 8.2.5. Summary -- References -- 9. Modeling Gas-Liquid Flow in Metallurgical Operations -- 9.1. Overview -- 9.2. Review of Modeling Methods -- 9.3. Mathematical Models -- 9.3.1. Quasi-Single-Fluid (Momentum Balance) Models -- 9.3.2. Two-Fluid Model -- 9.3.3. Mathematical Models Based on Energy Balance -- 9.4. Boundary Conditions -- 9.5. Numerical Solution -- References -- 10. Numerical Modeling of Multiphase Flows in Materials Processing -- 10.1. Overview -- 10.2. Control Volume-Based Finite Difference Method -- 10.2.1. Continuum Mixture Model -- 10.2.2. Two-Fluid Models -- 10.3. The Finite Element Method -- 10.4. Multi-domain (Two-Region) Methods -- 10.5. Boundary Conditions -- 10.5.1. Boundary Conditions in Multiphase Models -- 10.5.2. Boundary Conditions for Multi-region Method -- References -- 11. Review of Nanoscale and Microscale Phenomena in Materials Processing -- 11.1. Introduction -- 11.1.1. Fundamentals -- 11.1.2. Applications -- 11.2. Definitions and Generation Method of Nanoscale and Microscale -- 11.2.1. Bubbles -- 11.2.2. Generation Method -- 11.3. Removal of Gas from Gas-Liquid Mixture -- 11.4. Flow Pattern of Gas-Liquid Two-Phase Flow in Microchannels -- 11.5. Flow Characteristics in Microchannels -- 11.6. Heat Transfer in Microchannels -- 11.7. Numerical Simulation of Transport Phenomena -- 11.8. Mixing in Microchannels and Microreactors -- 11.9. Measurement Method -- 11.10. Enhancement of Gas Dissolution Rate -- 11.11. Microfluidic Devices -- 11.12. Fuel Cell -- 11.13. Closing Remarks -- References -- Appendix 1 Appendix 2. Index. Jacket Description/Back: Modeling Multiphase Materials Processes: Gas-Liquid Systems describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of fluid, high temperature, coupled heat and mass transfer, chemical reactions in some cases, and poor wettability of the reactor walls. Also discussed are: -Solutions based on experimental and numerical modeling of bubbling jet systems -Recent advances in the modeling of nanoscale multi-phase phenomena -Multiphase flows in micro-scale and nano-scale channels and reactors Modeling Multiphase Materials Processes: Gas-Liquid Systems will prove a valuable reference for researchers and engineers working in mathematical modeling and materials processing. Review Quotes: From the reviews: Multiphase material processes have undergone tremendous advances in recent years. This text will provide a good exposure to graduate students undertaking this course. It deals with the systems in which liquid and gaseous phases co-exist. The relationship between the two phases has been emphasized through various validation examples. The authors have done well to include the review of nanoscale and microscale phenomena in material processing. (S. C. Rajvanshi, Zentralblatt MATH, Vol. 1220, 2011) Review Quotes: From the reviews: Multiphase material processes have undergone tremendous advances in recent years. This text will provide a good exposure to graduate students undertaking this course. It deals with the systems in which liquid and gaseous phases co-exist. The relationship between the two phases has been emphasized through various validation examples. The authors have done well to include the review of nanoscale and microscale phenomena in material processing. (S. C. Rajvanshi, Zentralblatt MATH, Vol. 1220, 2011)"Brief Description: This book describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The focus is on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes.

Contributor Bio:  Iguchi, Manabu Iguchi, Osaka University. Contributor Bio:  Ilegbusi, Olusegun J Ilegbusi, Northwestern University.

Medie Bøger     Hardcover bog   (Bog med hård ryg og stift omslag)
Udgivet 24. november 2010
ISBN13 9781441974785
Forlag Springer-Verlag New York Inc.
Antal sider 413
Mål 155 × 235 × 23 mm   ·   766 g
Sprog Engelsk  

Vis alle

Mere med Manabu Iguchi